
Package: CodeDepends (via r-universe)
September 15, 2024

Version 0.6.6.1

Title Analysis of R Code for Reproducible Research and Code
Comprehension

Description Tools for analyzing R expressions or blocks of code and
determining the dependencies between them. It focuses on R
scripts, but can be used on the bodies of functions. There are
many facilities including the ability to summarize or get a
high-level view of code, determining dependencies between
variables, code improvement suggestions.

Author Duncan Temple Lang, Roger Peng, Deborah Nolan, Gabriel Becker

Maintainer Gabriel Becker <becker.gabriel@gene.com>

License GPL

URL https://github.com/duncantl/CodeDepends

BugReports https://github.com/duncantl/CodeDepends/issues

Depends methods

Imports codetools, graph, XML, utils

Suggests Rgraphviz, RUnit, knitr, highlight, RJSONIO, RCurl, Rcpp

VignetteBuilder knitr

Collate classes.R librarySymbols.R functionHandlers.R codeDepends.R
sectionDepends.R sweave.R xml.R jss.R frags.R codeTypes.R gc.R
graph.R parallel.R deps.R separateBlocks.R callGraph.R isPlot.R
isOutput.R refScript.R sideEffects.R highlightCode.R
freeVariables.R convenienceFuns.R

Repository https://duncantl.r-universe.dev

RemoteUrl https://github.com/duncantl/codedepends

RemoteRef HEAD

RemoteSha 7fd96dfee16b252e5f642c77a7ababf48e9326f8

1

https://github.com/duncantl/CodeDepends
https://github.com/duncantl/CodeDepends/issues

2 asVarName

Contents
asVarName . 2
findWhenUnneeded . 3
funchandlers . 5
getDependsThread . 6
getDetailedTimelines . 7
getExpressionThread . 8
getInputs . 9
getPropagateChanges . 11
getVariableDepends . 12
getVariables . 14
guessTaskType . 15
highlightCode . 16
historyAsScript . 17
inputCollector . 18
makeCallGraph . 20
makeTaskGraph . 21
makeVariableGraph . 22
readScript . 24
runUpToSection . 25
Script-class . 26
separateExpressionBlocks . 27
sourceVariable . 28
splitRedefinitions . 29
updatingScript . 31

Index 32

asVarName asVarName

Description

This function grabs a symbol out of an expression and returns it as a character (see details for which
symbol will be used).

This is a convenience function for use when constructing custom function handlers, it’s unlikely to
have much utility outside of that context.

Usage

asVarName(x)

Arguments

x The (sub)expression to extract a symbol from

findWhenUnneeded 3

Details

This function always returns a character vector representing a single symbol from x, but which code
varies depending on the exact form of x. When

• x is a single symbolthe character representation of the symbol is returned

• x is a function callasVarName is recursively called on the sub-expression for the first argument

• x is an assignmentasVarName is called recursively on the right-hand side (after -> expressions
are transformed to <- ones). This is a special case of the rule above.

Value

A character vector of length one representing the symbol (or literal) as described in the Details
section.

Author(s)

Duncan Temple Lang

Examples

asVarName(quote(rnorm(x, y, z))) # "x"
asVarName(quote(rnorm(x, y, z))[[1]]) # "rnorm" b/c [[1]] is called fun
asVarName(quote(rownames(a) <- b)) # "a"
asVarName(quote(rnorm(10, y, z))) # "10"

findWhenUnneeded Determine the code block after which a variable can be explicitly re-
moved

Description

These functions analyze the meta-information about code blocks and determine when a variable is
no longer needed and can add code to the relevant code block to remove the variable.

Usage

findWhenUnneeded(var, frags, info = lapply(frags, getInputs), simplify,
index = TRUE, end = NA, redefined = FALSE)

addRemoveIntermediates(doc, frags = readScript(doc),
info = getInputs(frags),
vars = getVariables(info))

4 findWhenUnneeded

Arguments

var the name of the variable(s) whose final

doc the location of the script, given as a file name or a connection

frags an object of class Script which is a list containing the code blocks in the script.
This is typically obtained via a call to readScript.

info an object of class ScriptInfo which is a list of ScriptNodeInfo objects.

simplify ignored

index a logical value indicating whether findWhenUnneeded should return the indices
of the code blocks/fragments or the code fragments themselves.

vars the names of all the variables of interest

end the value to use if the variable is used in the last code block, i.e. the end of the
script.

redefined a logical value which controls whether we return the earliest code block in which
the variable is redefined rather than when the variable is no longer used. Redef-
inition is a kind of "no longer being used" but for the value, not the variable.

Value

A vector of indices indicating the last expression in which each of the specified variables is an input.

Author(s)

Duncan Temple Lang

See Also

readScript addRemoveIntermediates

Examples

f = system.file("samples", "cleanVars.R", package = "CodeDepends")
sc = readScript(f)
findWhenUnneeded("x", sc)
findWhenUnneeded(c("x", "y"), sc)

z is never used
findWhenUnneeded("z", sc)
findWhenUnneeded("z", sc, end = 1L)

code = addRemoveIntermediates(f)
Note that rm(x), rm(y) and rm(d) are added.

code[c(4, 5, 6)]

funchandlers 5

funchandlers Specifying custom processing behavior, Function handlers and han-
dler factories

Description

Custom behavior when processing calls to certain functions is implemented by specifying function
handlers for those functions. This can be used to alter CodeDepends’ behavior when it sees these
functions, or if desired, to ignore them entirely when processing the parent expression.

Function handlers should never be called directly by end users.

CodeDepends attempts to provide reasonable defaults, in the form of the defaultFuncHandlers
list, which should be suitable for most users.

Arguments

e The (sub)expression being processed. This will be a call to the function your
handler is assigned to work on.

collector The input collector in use. Represents state as the expression tree is walked.

basedir The base directory when checking if a string literal is a file path

input Are we in a part of the whole expression that specifies inputs

formulaInputs Are symbols within formulas to be counted as inputs (TRUE) or non-standardly
evaluated variables (FALSE)

update Are we in a part of the expression that indicates a variable’s value is being up-
dated (i.e., complex right hand side)

pipe Are we in a direct pipe call

nseval Should any symbols that appear to be inputs be treated as nonstandardly-evaluated
instead

... unused

Details

Custom handling of functions and, rarely, some types of non functions (currently only inlined
NativeSymbol objects) by the getInputs function is specified via function handlers, which are
passed in a named list to inputCollector when creating a collector for use by getInputs.

Function handlers should only be used to construct an input collector (i.e., as an argument to
inputCollector). They should not ever be called directly by end users.

When creating new function handlers, they should accept the arguments specified above (other
than those to the factories). The first argument, e, will be an expression representing a call to the
function the handler is specified for, and second collector will be the collector object. Handlers
are expected to recursively process all aspects of the call expression to the extent desired. This will
often be done by calling getInputs again on, e.g., some or all arguments passed into the function
call.

Function handlers are also expected to respect the pipe and nseval arguments they receive.

6 getDependsThread

getDependsThread Compute which code blocks in a script are inputs to define a variable

Description

This function is used to determine which code blocks in an R "script" that are needed to define a
particular variable. This finds the smallest complete set of expressions or code blocks that must
be evaluated in order to define the specified variable(s). It omits expressions that do not provide
outputs that are not used as inputs to (indirectly) define the speciied variable.

Usage

getDependsThread(var, info, reverse = TRUE)

Arguments

var the name of a variable in the script

info a list of the meta-information for each of the code elements in the script.

reverse a logical value that determines whether we reverse the indices of the expressions
or leave them as end-to-first.

Value

An integer vector giving the indices of the script code blocks which are required to define var.

Author(s)

Duncan Temple Lang

See Also

getExpressionThread readScript getVariables

Examples

sc = readScript(system.file("samples", "dual.R", package =
"CodeDepends"))
sci = getInputs(sc, formulaInputs = TRUE) ## script has formula with no data.frame
idx = getDependsThread("fit", sci)

getDetailedTimelines 7

getDetailedTimelines Compute and plot life cycle of variables in code

Description

These functions allow one to get and visualize information about when variables are defined, rede-
fined and used within and across blocks of code in a script or the body of a function.

Usage

getDetailedTimelines(doc, info = getInputs(doc, ...), vars =
getVariables(info, functions = functions), functions=TRUE, ...)
S3 method for class 'DetailedVariableTimeline'
plot(x, var.srt = 0,

var.mar = round(max(4,
.5*max(nchar(levels(x$var))))), var.cex = 1, main = attr(x, "scriptName"),
mar = c(5, var.mar, 4, 1) + .1, ...)

Arguments

doc the name of a file or a connection which identifies the code to be analyzed

info meta-information extracted from the code identifying the inputs and outputs.
See getInputs.

vars the variables of interest

functions What type of functions should be included in the timeline: NULL for none, TRUE
for locally defined only, NA for unknown provenance functions, or FALSE for
non-locally-defined functions. Defaults to TRUE.

x the DetailedVariableTimeline object being plotted

var.srt rotation of the labels for the vertical axis listing the variables

var.mar the number of lines to leave for the vertical axis. The labels for this are variable
names so one often needs more space or to change the size of the labels.

var.cex character expansion factor for the variable labels on
the vertical axis.

main the title of the plot

mar a vector to use to set the mar graphics parameter

... Passed to down to getInputs for the default info value in getDetailedTimelines
and to underlying plotting functions for plot.DetailedTimelines.

Value

getDetailedTimelines returns a data frame with four columns: step, used, defined, and var.
Step represents steps within the timeline, with the same value indicating that the described event are
occuring at the same time. used indicates whether var was used at that step, and defined indicates
whether var was defined. Many rows will have FALSE for both as the variable is not used in that
code block.

8 getExpressionThread

Author(s)

Duncan Temple Lang

See Also

getInputs

Examples

f = system.file("samples", "results-multi.R", package = "CodeDepends")
sc = readScript(f)
dtm = getDetailedTimelines(sc, getInputs(sc))
plot(dtm)
table(dtm$var)

A big/long function
info = getInputs(arima0)
dtm = getDetailedTimelines(info = info)
plot(dtm, var.cex = .7, mar = 4, srt = 30)

getExpressionThread Find the sequence of expressions needed to get to a certain point in the
code

Description

What’s the difference between this and getVariableInputs, getVariableDepends, getSectionDepends?

This does not currently attempt to get the minimal subset of expressions within the code block.
In other words, if there are extraneous expressions within these blocks that are not actually neces-
sary, these are evaluated. This is important for expressions with side effects, e.g. writing files or
generating plots.

Usage

getExpressionThread(target, expressions, info = lapply(expressions,
getInputs, ...), ...)

Arguments

target either the index of the expression of interest in expressions or the names of
the variables.

expressions the list of expressions

info a list of objects giving information about the inputs to each top-level expression
in expressions.

... Passed to getInputs if info is not explicitly specified.

getInputs 9

Value

A Script-class object containing the subset of the code chunks pertinent to the target variable(s).

Author(s)

Duncan Temple Lang

See Also

getDependsThread

Examples

e = readScript(system.file("samples", "dual.R", package = "CodeDepends"))
getExpressionThread("fit", e)

getExpressionThread("y", e)
getExpressionThread("x", e)

getExpressionThread("k", e)

With several
s = readScript(system.file("samples", "sitepairs.R", package = "CodeDepends"))
o = getExpressionThread("covs", s)

getInputs Get input and output variables and literals from R expressions

Description

This function is used to analyze an R expression and identify the input and output variables in the
expressions and related packages that are loaded and files that are referenced.

This might be better called getCodeDepends. It is not to be confused with getVariableInputs.

Usage

getInputs (e, collector = inputCollector(), basedir = ".", reset =
FALSE, formulaInputs = FALSE, ...)

Arguments

e the expression whose code we are to process

collector an object which collects the different elements of interest in the code.

basedir the directory for the code relative to which we can resolve file names.

... additional parameters for methods

10 getInputs

reset a logical value that controls whether we call the collector’s reset method before
starting to process the expressions in the script.

formulaInputs Logical indicating whether symbols appearing in formulas should be treated as
inputs to the expression. Defaults to FALSE.

Value

A ScriptInfo object containing information about the expression(s) in e.

Things tracked include:

files the names of any strings used as arguments or literal values that correspond to
file names.

strings A vector of literal strings which appeared in e

libraries the names of any libraries explicitly loaded within this code.

inputs a character vector naming the variables that are used as inputs to the computa-
tions in this collection of expressions.

outputs a character vector giving the names of the variables that are assigned values in
this block of code, including assignments to elements of a variable, e.g. the
variable x in the expression x[[1]] <- 10.

updates character vector of variables which receive new values when evaluating the ex-
pression, but must already exist. Note this does not currently catch some sit-
uations, so checking if any symbols appear in both inputs and outputs is still
prudent.

functions a named logical vector, where the names are the names of the functions called
and the values indicate whether the function is local (TRUE), from a package
(FALSE) or unknown (NA). Note that this is not recursive.

removes a vector of variables which were removed (via the rm function) in e

nsevalVars A vector of variables which appear in appear in e, but which are non-standarly
evaluated and thus are not typical inputs. Note this classification is determined
by the functionhandlers in use by collector.

Note

Users should never call getInputs.langauge directly. It is listed here due to the vagaries of R
CMD check documentation checks.

Author(s)

Duncan Temple Lang

See Also

parse

getPropagateChanges 11

Examples

frags = parse(system.file("samples", "dual.R", package = "CodeDepends"))
formula involves non-df variables
inputs = lapply(frags, getInputs, formulaInputs=TRUE)
inputs
sapply(inputs, slot, "outputs")

Specify the base directory in which to resolve the file names.
getInputs(frags[[5]], basedir = system.file("samples", package = "CodeDepends"))

f = system.file("samples", "namedAnnotatedScript.R", package = "CodeDepends")
sc = readScript(f, "labeled")
getInputs(sc)
getInputs(sc[[2]])

getPropagateChanges Determine which expressions to update when a variable changes

Description

This function allows us to determine which subsequent expressions in the document need to be
evaluated when a variable is assigned a new value. This is the "opposite" of determining on which
variables a given variable depends; this is for identifying which variables and expressions need
to be updated when a variable changes. This is of use when propogating changes to dependent
expressions.

Usage

getPropagateChanges(var, expressions, info = lapply(expressions,
getInputs), recursive = FALSE, index = FALSE, envir
= globalenv(), eval = !missing(envir), verbose =
FALSE)

Arguments

var the name of the variable which has changed

expressions the list of all expressions in the document

info information extracted from the expressions about the inputs to each expressions.
See getInputs.

recursive a logical value that controls whether to work recursively on the expressions

index a logical value which controls whether we return the indices of the expressions
that would need to be evaluated based on the change to the variable var, or if
index is FALSE, we return the expressions themselves.

envir the environment in which to evaluate the expressions

12 getVariableDepends

eval a logical value controlling whether we evaluate the expressions or just return
them

verbose a logical value that controls whether we output information about the expres-
sions and their evaluation on the R console.

Value

This returns either the expressions or the indices of the expressions that need to be re-evaluated due
to a change in var.

Note

The returned expression do NOT include the expression which defines the variable var. Only
expressions *after* that are included.

Author(s)

Duncan Temple Lang

See Also

getExpressionThread getDependsThread

Examples

sc = readScript(system.file("samples", "formula.R", package = "CodeDepends"))
info = getInputs(sc)
getPropagateChanges("x", sc, info = info)
getPropagateChanges("y", sc, info = info)

getVariableDepends Determine dependencies for code blocks

Description

These functions provide ways to determine which code blocks must be evaluated before others
based on input and output variables. getVariableDepends is used to determine the code blocks
that need to be run in order to define particlar variables. getSectionDepends

Usage

getVariableDepends(vars, frags, info = lapply(frags, getInputs, ...),
checkLibraries = FALSE, asIndex = FALSE, functions = TRUE, ...)
getSectionDepends(sect, frags, info = lapply(frags, getInputs, ...), index =
FALSE, ...)

getVariableDepends 13

Arguments

vars the names of the variables of interest

frags the blocks or groups of expressions from the document

info the information about the fragments that identify the inputs. This is typically
computed as the default value for the parameter but can be provided explicitly
when the caller has alreay computed this and passes it to different functions.

index a logical value that controls whether we return the indices of the fragments of
interest (TRUE) or return the fragments themselves (FALSE)

sect the index of the section/fragment to be analyzed

checkLibraries a logical value

asIndex a logical value that controls whether we return the expressions/code blocks or
their indices.

functions passed to getVariables. What kind of functions should be counted as variables
(TRUE is local functions only, the default)

... passed to getInputs. Ignored if info is explicitly specified.

Value

getVariableDepends returns a Script-class object consisting of the subset of code blocks rele-
vant to the specified variables.

If asIndex is TRUE, getVariableDepends returns the indices of the code blocks in the original
script.

Author(s)

Duncan Temple Lang

See Also

getPropagateChanges getExpressionThread

Examples

e = readScript(system.file("samples", "dual.R", package = "CodeDepends"))
getVariableDepends("fit", e, formulaInputs = TRUE)
getVariableDepends("fit", e, formulaInputs = TRUE, asIndex = TRUE)

getVariableDepends("y", e, asIndex = TRUE)
getVariableDepends("y", e)

14 getVariables

getVariables Get the names of the variables used in code

Description

These functions and methods allow one to get the names of the variables used within a script or
block of code and from various derived types.

Usage

getVariables(x, inputs = FALSE, functions = TRUE, ...)

Arguments

x the object with information about the variables

inputs a logical indicating wether to include the input variables or just return the output
variables, i.e. those on the left hand side of of an assignment. Defaults to FALSE

functions Indicates what types of functions should be included. NULL Logical or NULL.
Indicates what kind of functions should be counted as variables: local (TRUE,
the default) indicates none, TRUE indicates user-defined or unknown provenance
functions, and FALSE indicates all functions. Ignored if inputs is FALSE.

... Passed to getInputs when generating script information to comput on.

Value

A character vector, with possibly repeated values, giving the names of the variables. If an annotated
script was used, the vector is named by the sections of the script.

Author(s)

Duncan Temple Lang

See Also

readScript getInputs

Examples

f = system.file("samples", "namedAnnotatedScript.R", package = "CodeDepends")
sc = readScript(f, "labeled")
getVariables(sc)

getVariables(sc[[3]])

guessTaskType 15

guessTaskType Guess the type of high-level task of a code block

Description

This attempts to infer the type of the task being performed. There is a small set of known task types,
listed in system.file("Vocabulary", package = "CodeDepends").

Currently this uses simple rules. In the future, we might use a classifier.

Usage

guessTaskType(e, info = getInputs(e))

Arguments

e the code block to be analyzed. This can be a call or an expression. Typically it
is an element of a Script-class, i.e. a ScriptNode-class object

info meta-information about the

Value

A character vector giving the different task identifiers.

Author(s)

Duncan Temple Lang

See Also

readScript

Examples

guessTaskType(quote(plot(x, y)))

e = expression({
d = read.table("myData.txt")
d$abc = d$a + log(d$b)
d[d$foo == 1,] = sample(n)

})
guessTaskType(e)

16 highlightCode

highlightCode Display R code with highlighting of variables, links to functions and
packages

Description

This function leverages the highlight package to create an HTML display of R code. It connects
all instances of a variable in the code so that a viewer can move the mouse over a variable and see
all uses of it in the code.

The motivations for this is to help navigate a script and to allow us to connect the code to plots of,
for example, the time-line or life-span of variables in a script.

Usage

highlightCode(obj, out = NULL, addFunctionLinks = TRUE, checkURLs= TRUE,
inline = TRUE, h = htmlRenderer(addFunctionLinks,
checkURLs), css = system.file("CSS", "highlight.css",
package = "CodeDepends"), jsCode =
system.file("JavaScript", "highlightSymbols.js", package =
"CodeDepends"))

Arguments

obj the name of a file containing R code or an R expression or function. Currently,
this needs to be a file.

out the name of a file to which the HTML document is written, or NULL or NA to just
return the in-memory document.

addFunctionLinks

how to generate the links for function calls. This can be NULL to have no links
for function calls, or a logical value indicating whether to have links or not, or
a function. If this is a function, it is called with a vector of function names and
should return a character vector with links for each of them.

checkURLs When sorting through possible link targets, should we check for existing local
files OR URLs. Defaults to TRUE, if FALSE only locally existing files are checked
for.

inline a logical value indicating whether to put the CSS and JavaScript code directly
into the HTML document or just refer to them.

h the renderer to create the HTML. See highlight

css the URL or local file name for the CSS content

jsCode the URL or local file name for the JavaScript code for the highlighting of the
variables.

historyAsScript 17

Details

This uses the highlight function to create the basic information for the code. We provide our own
renderer to provide the links for function calls and packages and to specify markup for the symbols.
Then we post-process the resulting HTML document to add our own CSS content and JavaScript
code.

Value

An HTML document or the name of the file to which it was written if out is specified.

Author(s)

Duncan Temple Lang

Examples

f = system.file("samples", "sitepairs.R", package = "CodeDepends")
url checking takes a while, too long for CRAN example
highlightCode(f, "foo.html", checkURLs=FALSE)

historyAsScript Convert R interactive history to a Script object

Description

This function is a means to capture the history of R commands interactively entered at the prompt
in this session (or saved across sessions) as a Script-class object. One can then analyze the
expressions to find relationships between variables and commands, which are irrelevant, ...

Usage

historyAsScript()

Value

An object of class Script-class.

Author(s)

Duncan Temple Lang

See Also

readScript history

18 inputCollector

inputCollector Create customized input/output collector for use in getInputs

Description

Create a custom input collector which will be used by getInputs to process to collect various aspects
of the code as it is being processed. Custom collector functions can be specified which will be called
when a particular function is called within the code.One major use for this is leveraging knowledge
of specific functions’ behavior to track side effects relevant to a particular use-case.

Usage

inputCollector(..., functionHandlers = list(...), inclPrevOutput =
FALSE, checkLibrarySymbols = FALSE, funcsAsInputs = checkLibrarySymbols)

Arguments

... Custom information collection functions. Argument names correspond to R
functions, with the custom collection function being called when a call to the
named function is detected within the code being processed. Overridden by
functionHandlers

functionHandlers

A named list of custom collection functions.

inclPrevOutput Should variables which were output previously within the code be treated as
inputs in subsequent expressions. If TRUE each expression within the code is
treated separately with respect to detecting input variables, if FALSE the code is
treated as a single block. Defaults to FALSE

checkLibrarySymbols

If TRUE symbols exported by default package and packages loaded within the
code via library or require calls are tracked and excluded from the list of
input variables. Defaults toFALSE

funcsAsInputs If TRUE functions called by the code being processed are treated as input vari-
ables and listed as such. Defaults to the value of checkLibrarySymbols. A
value of funcsAsInputs which does not agree with the value of checkLibrarySymbols
is NOT recommended.

Details

Each custom collection function should accept three arguments:

e: the code or expression currently being processed

collector: the current inputCollector

basedir: the base directory in which the processing is taking place, e.g. to determine whether
strings correspond to files

inputCollector 19

These functions should process the expression and then use collector’s collection functions and/or
the <<- assignment operator to update the lists of found entities.

Currently trackable entities, updatable by <entity><<-c(<entity>,
value) or as specified, include:

libraries: libraries loaded by the code via library or require. Updatable by calling collector$library

libSymbols: symbols exported by available libraries. Tracked automatically within collector$library

files: string constants which correspond to an existing file in basedir. Tracked automatically
when strings are passed to collector$string

strings: string constants which do not correspond to existing files. Tracked automatically when
strings are passed to collector$string

vars: all variable names used in the code. Updatable by calling collector$vars with input as
TRUE or FALSE as appropriate

set: variable names which are assigned to in the code (input variables). Updatable by calling
collector$set or collector$vars with input=TRUE

functions: functions called by the code. Updatable by calling collector$calls. This will also
update vars if the collector was created with funcsAsInputs=TRUE

removes: variables removed by the vode via calls to collector$removes

updates: variables which have had elements within them updated, e.g. via x$foo <- bar. Updat-
able via calls to collector$update

sideEffects: side effects generated by the code. Experimental, default side effect detection should
not be assumed to be robust or exhaustive. Updatable via calls to sideEffects

formulaVariables: If formulaInputs is FALSE within the call to getInputs, this tracks variables
which appear within formulas, otherwise this is unused and such variables are treated as input.
Updatable via the modelVars argument in calls to collector$addInfo

Value

A list of functions used to update internal tracking variables (see Details) as well as the following:

functionHandlers: The list of function handlers in use by the collector.

reset: A function which resets the internal tracking variables.

results: A function which returns a ScriptNodeInfo object representing the current state of the
collection.

Note

Custom handlers take precedence over default proccessing mechanism. Care should be taken when
overriding core functions such as =, ~, $, library, etc.

Note

Specific internal behaviors of the default collection mechanisms are experimental and may change
in future versions.

20 makeCallGraph

Author(s)

Duncan Temple Lang

See Also

ScriptNodeInfo getInputs

Examples

f = system.file("samples", "results-multi.R", package="CodeDepends")
sc = readScript(f)
collector = inputCollector(library = function(e, collector, basedir, ...)
{

print(paste("loaded library", e[[2]]))
collector$library(as.character(e[[2]]))

})
res = getInputs(sc, collector = collector)
#[1] "loaded library splines"
#[1] "loaded library tsModel"

makeCallGraph Create a graph representing which functions call other functions

Description

This function and its methods provide facilities for constructing a graph representing which func-
tions call which other functions.

Usage

makeCallGraph(obj, all = FALSE, ...)

Arguments

obj The name of one or more packages as a string, optionally prefixed with "package:".
This can be a vector of package names. Currently the packages should already
be on the search path. Other inputs may be supported in the future

all a logical value that controls whether the graph includes all the functions called
by any of the target functions. This will greatly expand the graph.

... additional parameters for the methods

Value

An object of class graphNEL-class

Note

We may extend this to deal with global variables and methods

makeTaskGraph 21

Author(s)

Duncan Temple Lang

See Also

The graph and Rgraphviz packages.

The SVGAnnotation package can be used to mae thee graphs interactive.

Examples

gg = makeCallGraph("package:CodeDepends")
if(require(Rgraphviz)) {

plot(gg, "twopi")

ag = agopen(gg, layoutType = "circo", name = "bob")
plot(ag)

}

if(require(Rgraphviz)) {
Bigger fonts.

zz = layoutGraph(gg)
graph.par(list(nodes = list(fontsize = 48)))
renderGraph(zz)

}

Two packages
library(codetools)
gg = makeCallGraph(c("package:CodeDepends", "package:codetools"))

makeTaskGraph Create a graph connecting the tasks within a script

Description

This function creates a graph connecting the high-level tasks within a script. The tasks are blocks of
code that perform a step in the process. Each code block has input and output variables. These are
used to define the associations between the tasks and which tasks are inputs to others and outputs
that lead into others.

Usage

makeTaskGraph(doc, frags = readScript(doc), info = as(frags, "ScriptInfo"))

Arguments

doc the name of the script file

frags the code blocks in the script

info the meta-information detailing the inputs and outputs of the different code blocks/fragments

22 makeVariableGraph

Value

An object of class graphNEL-class.

Author(s)

Duncan Temple Lang

See Also

readScript getInputs

Examples

Not run:
f = system.file("samples", "dual.R", package = "CodeDepends")
g = makeTaskGraph(f)

if(require(Rgraphviz))
plot(g)

f = system.file("samples", "parallel.R", package = "CodeDepends")
g = makeTaskGraph(f)

if(require(Rgraphviz))
plot(g)

f = system.file("samples", "disjoint.R", package = "CodeDepends")
g = makeTaskGraph(f)

if(require(Rgraphviz))
plot(g)

End(Not run)

makeVariableGraph Create a graph describing the relationships between variables in a
script

Description

This creates a graph of nodes and edges describing the relationship of how some variables are used
in defining others.

Usage

makeVariableGraph(doc, frags = readScript(doc), info = getInputs(frags),
vars = getVariables(info, inputs = free), free = TRUE)

makeVariableGraph 23

Arguments

doc the name of the script file

frags the code fragments from the script as a Script object.

info the ScriptInfo list of ScriptNodeInfo objects describing each node.

vars a character vector giving the names of the variables in the scripts. By default,
these are the variables defined in the script.

free a logical value that is passed to getInputs and controls whether we include the
free/global variables in the script.

Details

Note that this collapses variables with the same name into a single node. Therefore, if the code uses
the same name for two unrelated variables, there may be some confusion.

Value

An object of class graphNEL from the graph package.

Author(s)

Duncan Temple Lang

See Also

readScript getInputs getVariables

graph Rgraphviz

Examples

Not run:
u = url("http://www.omegahat.net/CodeDepends/formula.R")
sc = readScript(u)
close(u)
g = makeVariableGraph(, sc)

End(Not run)

f = system.file("samples", "results-multi.R", package = "CodeDepends")
sc = readScript(f)
g = makeVariableGraph(info = getInputs(sc))
if(require(Rgraphviz))
plot(g)

24 readScript

readScript Read the code blocks/chunks from a document

Description

This is a general function that determines the type of the document and then extracts the code from
it.

This is an S4 generic and so can be extended by other packages for document types that have a
class, e.g. Word or OpenOffice documents.

readAnnotatedScript is for reading scripts that use a vocabulary to label code blocks with high-
level task identifiers to indicate what the code does in descriptive terms.

Usage

readScript(doc, type = NA, txt = readLines(doc), ...)
readAnnotatedScript(doc, txt = readLines(doc))

Arguments

doc the document, typically a string giving the file name. This can also be a connec-
tion, e.g. created via url.

type a string indicating the type of the document. If this is missing, the function
calls getDocType to attempt to determine this based on the "common" types of
documents.

txt the lines of text of the document.

... Passed to low-level input functions used by various methods.

Value

A list of the R expressions that constitute the code blocks.

Author(s)

Duncan Temple Lang

See Also

parse

Examples

e = readScript(system.file ("samples", "dual.R", package = "CodeDepends"))
Not run:
readScript(url("http://www.omegahat.net/CodeDepends/formula.R"))

End(Not run)

runUpToSection 25

runUpToSection Evaluate the code blocks up to a particular section of a document

Description

This function allows the caller to evaluate the code blocks within a document all the way up to a
specified section of the document.

Usage

runUpToSection(section, doc, all = TRUE, env = globalenv(),
nestedEnvironments = FALSE, frags = readScript(doc),
verbose = FALSE)

Arguments

section the index of the section, i.e. a number
doc the name of the file containing the code
all a logical value. It should be TRUE for now.
env the environment in which the expressions will be evaluated
nestedEnvironments

a logical value controlling whether the each code block should be evaluated in its
own environment which are created with the previous code block’s environment
as a parent environment.

frags the code fragments read from the document or specified directly by the caller.
verbose logical value indicating whether to display the code

Value

A list containing the results of evaluating the different fragments. The list will have a length given
by the section number.

Note

Currently, all = FALSE is not implemented.

Author(s)

Duncan Temple Lang

See Also

sourceVariable

Examples

frags = parse(system.file("samples", "dual.R", package = "CodeDepends"))
runUpToSection(3, frags = frags, verbose = TRUE, all = TRUE)

26 Script-class

Script-class The Script class and elements

Description

This package works with collections of expressions or code blocks and such a sequence can be
thought of as a script. The Script class is a list of code elements. Such objects are typically created
via a call to readScript. They can be read from XML files, tangled Sweave output, regular R
source files and R source files that are annotated to identify the general task of each code block. This
last type of script has its own class named AnnotatedScript and the code elements are annotated
with labels such as dataInput, simulate, plot, model, eda and so on.

Each element of a Script list represents code. These are stored as objects of class ScriptNode. A
ScriptNode class has slots for the code, the taskType indicating the high-level nature of the code,
and an id so we can easily refer to it.

While our focus is on the code elements in a Script, we work with meta-data about the code
elements. We identify information such as the input variables required by a code element, the
variables it assigns (the outputs) and so on. This information is stored in a ScriptNodeInfo object.
And a collection of such objects that parallels a script is a ScriptInfo object.

We can easily map a Script or a ScriptNode to the corresponding meta-information via the coer-
cion methods as(script, "ScriptInfo") and as(node, "ScriptNodeInfo").

Objects from the Class

Objects of class Script are created with readScript.

Objects of class ScriptInfo are created with getInputs or as(, "ScriptInfo").

Slots

.Data: the elements of the list.

location: a character string that gives the file name or URL of the code for this script.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

coerce signature(from = "Script", to = "ScriptInfo"): convert a Script to a ScriptInfo
to access the meta-information

coerce signature(from = "ScriptNode", to = "ScriptNodeInfo"): compute the meta-information
from an individual code element.

Author(s)

Duncan Temple Lang

separateExpressionBlocks 27

See Also

readScript

Examples

f = system.file("samples", "results-multi.R", package = "CodeDepends")
sc = readScript(f)
info = as(sc, "ScriptInfo")
info = getInputs(sc, basedir = dirname(f))

Providing our own handler for calls to source()
sourceHandler = function(e, collector = NULL, basedir = ".", ...) {

collector$string(e[[2]], , TRUE)
collector$calls(as.character(e[[1]]))

}
h = CodeDepends:::inputCollector(source = sourceHandler)
info = getInputs(sc, h, basedir = dirname(f))

Not run:
u = url("http://www.omegahat.net/CodeDepends/formula.R")
sc = readScript(u)
as(sc, "ScriptInfo")

End(Not run)

separateExpressionBlocks

Convert a script into individual top-level calls

Description

This function converts a script of code blocks (e.g. from Sweave, XML, or an annotated script) with
grouped expressions into individual top-level calls. The intent of this is to allow us to deal with the
calls at a higher-level of granularity than code blocks. In other words, we can easily compute
the depenendcies on the individual calls rather than on collections of calls. This allows us to re-
evaluate individual expressions rather than entire code blocks when we have to update variables due
to changes in "earlier" variables, i.e. those defined earlier in the script and recomputed for various
reasons.

Usage

separateExpressionBlocks(blocks)

Arguments

blocks a list of the expressions or calls, i.e. the code blocks, in the script.

28 sourceVariable

Value

A list of call or assignment expressions.

Author(s)

Duncan Temple Lang

See Also

readScript

Examples

f = system.file("samples", "dual.R", package = "CodeDepends")
sc = readScript(f)
separateExpressionBlocks(sc)

sourceVariable Evaluate code in document in order to define the specified variables

Description

This function allows the caller to evaluate the code within the document (or list of code chunks di-
rectly) in order to define one or more variables and then terminate. This is similar to runUpToSection
but is oriented towards variables rather than particular code blocks.

Usage

sourceVariable(vars, doc, frags = readScript(doc), eval = TRUE, env = globalenv(),
nestedEnvironments = FALSE, verbose = TRUE,
checkLibraries = eval, force = FALSE, first = FALSE,
info = lapply(frags, getInputs))

Arguments

vars the names of the variables which are of interest. This need not include interme-
diate variables, but instead is the vector of names of the variables that the caller
wants defined ultimately.

doc the document containing the code blocks

frags the code fragments

eval whether to evaluate the necessary code blocks or just return them.

env the environment in which to evaluate the code blocks.
nestedEnvironments

a logical value indicating whether to evaluate each of the different code blocks
within their own environment that is chained to the previous one.

splitRedefinitions 29

verbose a logical value indicating whether to print the expression being evaluated before
it is actually evaluated.

checkLibraries a logical value that controls whether we check for functions that are not cur-
rently available and if there are any whether we add calls to load libraries in
getVariableDepends.

force a logical value that controls whether we evaluate the expression to create or
update a variable if the variable already exists in env when we analyze the code
(i.e., before we evaluate any of the expressions).

first a logical value. This is intended to allow running up to the first instance of the
variable, not all of them.

info the information about each expression. This is computed automatically, but the
caller can specify it to avoid redundant computations.

Value

If eval is TRUE, a list of the results of evaluating the code blocks. Alternatively, if eval is FALSE,
this returns the expressions constituting the code blocks. In this case, the function is the same as
getVariableDepends

Note

We should add a nestedEnvironments parameter as in runUpToSection. In fact, consolidate the
code so it can be shared.

Author(s)

Duncan Temple Lang

See Also

getVariableDepends

Examples

f = system.file("samples", "dual.R", package = "CodeDepends")
e = readScript(f)
getVariableDepends("k", frags = e)
sourceVariable("k", frags = e, verbose = TRUE)

splitRedefinitions Divide a script into separate lists of code based on redefinition of a
variable

30 splitRedefinitions

Description

The purpose of this function is to take a script consisting of individual calls or code blocks and to
divide it into separate blocks in which a particular variable has only one definition. Within each
block the variable is assigned a new value.

At present, the code is quite simple and separates code blocks that merely alter an existing variable’s
characteristics, e.g. setting the names, an individual variable. Ideally we want to separate very
different uses of a symbol/variable name which are unrelated. We will add more sophisticated code
to (heuristically) detect such different uses, e.g. explicit assignments to a variable.

Separating these code blocks can make it easier to treat the definitions separately and the different
stages of the script.

Usage

splitRedefinitions(var, info)

Arguments

var the name of the variable whose redefinition will identify the different code
blocks

info a list of ScriptNodeInfo-class objects identifying the input and output vari-
ables for each code block.

Value

A list with as many elements as there are (re)definitions of the variable each being a list of code
blocks.

Author(s)

Duncan Temple Lang

See Also

readScript

Examples

sc = readScript(system.file("samples", "redef.R", package =
"CodeDepends"))

scinfo = getInputs(sc)
groups = splitRedefinitions("x", scinfo)

updatingScript 31

updatingScript Create a Script object that re-reads the original file as needed

Description

This function reads the code in a particular document and creates a Script-class object to repre-
sent the code and allow us to do analysis on that code. Unlike readScript, this object continues
to read any updates to the original code file when we use this Script object in computations. This
allows us to modify the original source interactively and concurrently with our R session and still
have the script remain up-to-date with that code.

Usage

updatingScript(doc, ...)

Arguments

doc the name/location of the document containing the R code

... any additional arguments, passed to readScript.

Details

This uses a reference class to update state across calls.

Value

an object of class DynScript

Author(s)

Duncan Temple Lang

See Also

readScript

Examples

cat("x = 1:10\ny = 3*x + 7 + rnorm(length(x))\n", file = "foo.R")
sc = updatingScript("foo.R")

as(sc, "Script")

con = file("foo.R", "at")
cat("z = x + y", file = con)
close(con)

as(sc, "Script")

Index

∗ IO
readScript, 24
separateExpressionBlocks, 27

∗ analysis
inputCollector, 18

∗ classes
Script-class, 26

∗ code analysis
historyAsScript, 17
updatingScript, 31

∗ code
inputCollector, 18

∗ hplot
getDetailedTimelines, 7
makeCallGraph, 20
makeVariableGraph, 22

∗ meta-programming
getDependsThread, 6

∗ misc
asVarName, 2

∗ programming
asVarName, 2
findWhenUnneeded, 3
getDependsThread, 6
getDetailedTimelines, 7
getExpressionThread, 8
getInputs, 9
getPropagateChanges, 11
getVariableDepends, 12
getVariables, 14
guessTaskType, 15
highlightCode, 16
historyAsScript, 17
inputCollector, 18
makeCallGraph, 20
makeTaskGraph, 21
makeVariableGraph, 22
readScript, 24
runUpToSection, 25

Script-class, 26
separateExpressionBlocks, 27
sourceVariable, 28
splitRedefinitions, 29
updatingScript, 31

∗ static
inputCollector, 18

∗ utitlites
asVarName, 2

[,Script,character,missing-method
(Script-class), 26

[,Script,vector,missing-method
(Script-class), 26

$,Script-method (Script-class), 26

addRemoveIntermediates, 4
addRemoveIntermediates

(findWhenUnneeded), 3
AnnotatedScript-class (Script-class), 26
applyhandlerfactory (funchandlers), 5
assignfunhandler (funchandlers), 5
assignhandler (funchandlers), 5
asVarName, 2

coerce,DetailedVariableTimeline,matrix-method
(getDetailedTimelines), 7

coerce,DynScript,Script-method
(updatingScript), 31

coerce,expression,ScriptNodeInfo-method
(Script-class), 26

coerce,language,ScriptNodeInfo-method
(Script-class), 26

coerce,Script,ScriptInfo-method
(Script-class), 26

coerce,ScriptNode,ScriptNodeInfo-method
(Script-class), 26

colonshandler (funchandlers), 5
counthandler (funchandlers), 5

datahandler (funchandlers), 5

32

INDEX 33

defaultFuncHandlers (funchandlers), 5
defhandler (funchandlers), 5
dollarhandler (funchandlers), 5

filterhandler (funchandlers), 5
findWhenUnneeded, 3
forhandler (funchandlers), 5
formulahandler (funchandlers), 5
fullnsehandler (funchandlers), 5
funchandler (funchandlers), 5
funchandlers, 5
functionhandlers (funchandlers), 5
funshandler (funchandlers), 5

getDependsThread, 6, 9, 12
getDependsThread,character-method

(getDependsThread), 6
getDependsThread,name-method

(getDependsThread), 6
getDependsThread,numeric-method

(getDependsThread), 6
getDetailedTimelines, 7
getExpressionThread, 6, 8, 12, 13
getInputs, 7, 8, 9, 11, 14, 20, 22, 23, 26
getInputs,ANY-method (getInputs), 9
getInputs,DynScript-method

(updatingScript), 31
getInputs,function-method (getInputs), 9
getInputs,Script-method (getInputs), 9
getInputs,ScriptNode-method

(getInputs), 9
getInputs,ScriptNodeInfo-method

(getInputs), 9
getPropagateChanges, 11, 13
getSectionDepends (getVariableDepends),

12
getVariableDepends, 12, 29
getVariables, 6, 14, 23
getVariables,expression-method

(getVariables), 14
getVariables,Script-method

(getVariables), 14
getVariables,ScriptInfo-method

(getVariables), 14
getVariables,ScriptNode-method

(getVariables), 14
getVariables,ScriptNodeInfo-method

(getVariables), 14
groupbyhandler (funchandlers), 5

guessTaskType, 15

highlight, 16, 17
highlightCode, 16
history, 17
historyAsScript, 17

inputCollector, 18

libreqhandler (funchandlers), 5
list, 26

makeCallGraph, 20
makeCallGraph,character-method

(makeCallGraph), 20
makeCallGraph,function-method

(makeCallGraph), 20
makeCallGraph,list-method

(makeCallGraph), 20
makeTaskGraph, 21
makeVariableGraph, 22

noophandler (funchandlers), 5
nseafterfirst (funchandlers), 5
nsehandlerfactory (funchandlers), 5
nseonlyhandlerfactory (funchandlers), 5

parse, 10, 24
pipehandler (funchandlers), 5
plot.DetailedVariableTimeline

(getDetailedTimelines), 7

readAnnotatedScript (readScript), 24
readScript, 4, 6, 14, 15, 17, 22, 23, 24,

26–28, 30, 31
readScript,character-method

(readScript), 24
readScript,connection-method

(readScript), 24
readScript,missing-method (readScript),

24
readScript,XMLInternalDocument-method

(readScript), 24
rmhandler (funchandlers), 5
runUpToSection, 25

Script-class, 15, 26
scriptInfo (getInputs), 9
ScriptInfo-class (Script-class), 26
ScriptNode-class (Script-class), 26

34 INDEX

ScriptNodeInfo, 19, 20
ScriptNodeInfo-class (Script-class), 26
separateExpressionBlocks, 27
sourceVariable, 25, 28
splitRedefinitions, 29
spreadhandler (funchandlers), 5
summarize_handlerfactory

(funchandlers), 5

updatingScript, 31
url, 24

vector, 26

	asVarName
	findWhenUnneeded
	funchandlers
	getDependsThread
	getDetailedTimelines
	getExpressionThread
	getInputs
	getPropagateChanges
	getVariableDepends
	getVariables
	guessTaskType
	highlightCode
	historyAsScript
	inputCollector
	makeCallGraph
	makeTaskGraph
	makeVariableGraph
	readScript
	runUpToSection
	Script-class
	separateExpressionBlocks
	sourceVariable
	splitRedefinitions
	updatingScript
	Index

